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a b s t r a c t

KADATH is a library that implements spectral methods in a very modular manner. It is
designed to solve a wide class of problems that arise in the context of theoretical physics.
Several types of coordinates are implemented and additional geometries can be easily
encoded. Partial differential equations of various types are discretized by means of spectral
methods. The resulting system is solved using a Newton–Raphson iteration. Doing so,
KADATH is able to deal with strongly non-linear situations. The algorithms are validated
by applying the library to four different problems of contemporary physics, in the fields
of gauge field theory and general relativity.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Spectral methods are a class of numerical methods that aim at solving partial differential equations. For detailed presen-
tations of those techniques, the reader should refer to the numerous books available like [1–6]. The basic idea is to describe
any field by an appropriate linear combination of known functions called the basis functions. Classic examples of basis are
the trigonometrical functions or orthogonal polynomials (Chebyshev, Legendre, etc.). The description of functions by their
spectral expansion is by essence non-local, which is to be contrasted with finite difference schemes. Spectral methods are
particularly appealing because of the very fast convergence of the spectral expansion to the real function it describes. More
precisely for C1 functions the error decreases faster than any power-law of N, where N is the order of the expansion. A multi-
domain decomposition, where the physical space is decomposed into several computational regions, is usually used to en-
sure such smoothness of the functions.

Originally, spectral methods were used in the context of numerical hydrodynamics and led to the successful computa-
tions of turbulence regimes and various two or three-dimensional flows. Numerous applications can be found in [2,4].
The application of spectral methods to the field of general relativity is somewhat more recent and starts with the pioneer
work of the Meudon group, in the late eighties. Since then, such methods have been successfully applied by several groups
to systems like binary black holes or magnetized neutron stars. A review of spectral methods in the context of general rel-
ativity can be found in [7].

LORENE is the library written by the Meudon group that implements spectral methods for general relativity. It is written
in C++, is used by several groups worldwide and produced many results (see [8] for references). Nevertheless, with time, it
appeared that LORENE did encounter some difficulties and had some serious limitations. The first one comes from the fact
that the library is designed to work with spherical coordinates only and from the difficulty to implement new geometries like
the bispherical one for instance. Second, LORENE solves systems by an iterative loop that requires a splitting of the equations
in terms of operators (like the Laplace one) and sources. This splitting is obviously not unique. If it can be natural in some
cases, this is not true when strong non-linearities occur, like for gauge field problems where the use of LORENE proved
. All rights reserved.
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problematic (the example shown in Section 7.1 was never successfully computed by LORENE). Finally, and even if learning
LORENE is manageable, it can still be somewhat difficult to write a complete code. A more user-friendly coding style would
be a good thing.

For all those reasons, it has been decided to think about a new library that would use the many successes of LORENE and
try to improve on its weaknesses. The KADATH library is the result of this process and this work is the first paper devoted to
its description. The design of KADATH was also inspired by some aspects of other spectral solvers, like the ones described in
[9–11]. Three different types of coordinates have been coded so far but the setting is such that the inclusion of additional
geometries is relatively easy and straightforward. Spectral expansion is done either with respect to Chebyshev or Legendre
polynomials and trigonometrical functions. Systems of equations are solved as such, by means of a Newton–Raphson iter-
ation and do require only a minimal rewriting of the equations. They are passed to the solver as character strings. Those
strings are interpreted by KADATH using a syntax close to the LateX one [12], so that the interface should be relatively clear
to any modern physicist. The library is written in C++. It has been made public and can be downloaded by going to the KAD-
ATH web-site [13].

In its current state of development, the library deals with boundary value problems. Moreover, the geometry of the var-
ious boundaries must be known in advance and is fixed during the whole computation. Such kind of setting is useful in com-
puting stationary or periodic solutions and encompasses a wide class of problems, as he four examples discussed in Section 7
illustrate. Nevertheless, the field of application of KADATH would be significantly broadened if some of those restrictions
could be lifted. One possible extensions would be the possibility to deal with free boundary problems where the geometry
is no longer fixed but numerically determined in the course of the computation. This would be required, for instance, to com-
pute neutron stars in rotation, where the shape of the surface of the star is an unknown. Another addition to KADATH would
be the inclusion of tools to study time-evolution problems. This is however a major task that would require much time and
work. Those possible extensions, as long as a few others, are discussed in more detail in Section 8.

This paper contains two main parts. In the first one, the basic numerical techniques used by the library are exposed. Not
all the details are given, for it would be cumbersome. Nevertheless it should give the reader a good feeling of what KADATH is
about. Section 2 describes the way multi-domain settings are implemented along with the three different types of geome-
tries currently present in KADATH. In Section 3, after a short introduction on spectral expansion, the various basis used by
KADATH are detailed, for different geometries and different types of mathematical objects (scalars, tensors, etc.). The way
additional regularities are enforced is also discussed in some details. Section 4 is devoted to the discretization of partial dif-
ferential equations by s and Galerkin methods. The resulting non-linear system is solved by a Newton–Raphson iteration
which is described in Section 5. The computation of the Jacobian and its inversion are discussed, especially in the context
of parallel computing. Section 6 gives an outline of what a code that uses KADATH should look like.

The second part of the paper is concerned with four different test problems (Section 7). Those problems have been chosen
because they illustrate different aspects of KADATH, in terms of the type of equations, variables or geometries. If those are not
exactly new results, they are far from being trivial and they all relate to very contemporary physics. The existence of vortons
in a particular gauge field theory is confirmed in Section 7.1, a critical collapse solution is constructed in Section 7.2, binary
black holes spacetimes are obtained in Section 7.3 and the Kerr solution for a single rotating black hole is computed in Sec-
tion 7.4. Future developments and applications are discussed in Section 8.
2. Setting the geometry

2.1. Multi-domain decomposition

KADATH implements spectral methods in a multi-domain manner where the physical space is split into several compu-
tational domains. The advantages of using a multi-domain setting are numerous. First of all, when dealing with discontin-
uous fields, the domains can be chosen so that the surfaces of discontinuities coincide with the boundaries. Doing so, in each
domains, all the functions are C1, thus recovering the spectral convergence that would be lost otherwise (see Section 3.1).
The use of several domains also enables to use different resolutions in different parts of space, increasing accuracy in regions
where needed. This is called fixed-mesh refinement. There are also some cases where setting a global and regular set of
numerical coordinates is troublesome. This is for instance the case of the bispherical coordinates, as can be seen in Section
2.3. Such difficulties can be overcome by setting different numerical coordinates in different regions of space.

For each domain, there is a mapping between a set of physical coordinates (the ðr; h;uÞ of spherical coordinates for in-
stance) and a set of numerical coordinates. The spectral expansion is performed with respect to the numerical ones. The map-
ping between the two sets of coordinates ensures that the numerical ones lies in the appropriate range to do the expansion.
For instance, a coordinate must be in ½�1;1� if Chebyshev polynomials are used.

The physical space is divided into a finite set of domains. Only touching and not overlapping domains are considered. The
domains are described by the class Domain and its derived classes. The way the various domains are set with respect to each
other is encoded in the abstract class Space and its derived classes. This is needed, for instance, to write the appropriate
matching conditions across the boundaries of the domains.

KADATH provides several domain decompositions that are listed below. The library has been designed to be very modular
in terms of the geometry, so that it is relatively easy to implement new types of domains and spaces. Among the possible
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future developments, one could think about square-like domains, three-dimensional cylindrical coordinates or spaces with
more than three dimensions.

2.2. Spherical space

The class Space_spheric implements a decomposition of space in terms of spherical shells. This is obviously intended
mainly for spherical-like objects but has also been successfully used for more complicated shapes, like the toroidal one (see
Section 7.1). This geometry is very similar to the one described in [14].

In this setting, the physical coordinates are the standard spherical ones ðr; h;uÞ. One notes h the zenith angle and u the
azimuthal one, so that, in terms of Cartesian coordinates, one gets:
x ¼ r sin h cos u ð1Þ
y ¼ r sin h sin u ð2Þ
z ¼ r cos h ð3Þ
For all the type of domains, the numerical angular coordinates ðhH;uHÞ are identical to their physical counterparts. So far, the
various fields are supposed to be either symmetric or antisymmetric with respect to the z ¼ 0 plane. This implies that h can
be restricted to ½0;p=2�. No symmetry is assumed with respect to u, which lies in ½0;2p½. Concerning the radial coordinate r,
three different types of domains are considered.

� The class Domain_nucleus represents a spherical domain that encompasses the origin of the coordinate system and that
extends up to a finite radius. The numerical radial coordinate rH relates to r by r ¼ arH, where a is a constant that gives the
radius of the domain. rH lies in ½0;1�.

� The class Domain_shell represents a spherical shell, where the radius r lies between to finite values. The numerical coor-
dinate rH relates to r by an affine law r ¼ arH þ b, where a and b are constants. rH spans the intervale ½�1;1�.

� The last type of spherical domain is called Domain_compact an extends from some finite radius up to infinity. This is done
by demanding that rH relates to r by r ¼ 1

aðrH�1Þ, where a is a negative constant. rH lies in ½�1;1�. As intended, the domain

goes to r ¼ 1, which corresponds to rH ¼ 1.

For axisymmetric problems that do not depend on u, a variant of the spherical space has been implemented. It is called
Space_polar and the only difference is that the variable u has been removed, making the space two-dimensional, thus
reducing the computational cost.

2.3. Bispherical space

Bispherical coordinates are implemented by the class Space_bispheric. In the standard point of view, bispherical coor-
dinates ðv;g;uÞ relate to the Cartesian ones by:
x ¼ a sinh g
cosh g� cos v

y ¼ a sinv cos u
cosh g� cosv

z ¼ a sin v sinu
cosh g� cos v

ð4Þ
The coordinate g can take all the values in R, whereas v goes from 0 to p. u is the angle around the x-axis and it lies in
½0;p�, once the symmetry with respect to the plane z ¼ 0 is taken into account.

Bispherical coordinates are such that the surfaces of constant g are non-concentric spheres located on the x-axis, hence
their name. There are given by
x� a cothgð Þ2 þ y2 þ z2 ¼ a2

sinh2g
ð5Þ
This property makes those coordinates very appropriate to deal with physical systems consisting of two spherical-like ob-
jects. So far, KADATH enables the user to consider the space exterior to two spheres (for an application see Section 7.3). Let us
call r1 and r2 the radii of those spheres and d their separation. It is then easy to see that the space exterior to those two
spheres is described by the points such that g 2 ½g�;gþ�. The values of g� and the scale factor a are then uniquely defined
and obey the following set of equations:
sinh g� ¼ a
r1

ð6Þ

sinh gþ ¼ a
r2

ð7Þ

d ¼ a cothgþ � coth g�ð Þ: ð8Þ
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Those equations simply translate in terms of g the positions and sizes of the spheres by making use of Eq. (5). Let us note
that, doing so, the origin of the Cartesian coordinates (i.e. the point x ¼ y ¼ z ¼ 0) cannot be placed arbitrarily.

In bispherical coordinates, spatial infinity is described by g ¼ 0 and v ¼ 0 implying that the surface r ¼ 1 is described by
a single line. This makes a simple compactification like the one used in the spherical case (see Section 2.2) impracticable. This
can be seen if one forms the ratio of the Cartesian coordinates with respect to r. As one approaches spatial infinity such ratio
goes like
x
r
! gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ v2
p ð9Þ
which does not admit a well-defined limit when g! 0 and v! 0. This effect is closely related to the fact that the coordinate
transformation (4) is only C0 and not C1 at infinity, as can be seen in [11].

One way to overcome this difficulty is to excise a region of space around the point g ¼ 0 and v ¼ 0 (see [11] for another
possibility). Doing so, the physical space does no longer extend up to infinity but only to a finite distance. The shape of the
newly created exterior boundary is defined by the shape of the excision region. For instance, in order to get a spherical outer
boundary of radius R, one needs to excise the region:
sinh2gþ sin2 v
cosh g� cosvð Þ2

6
R2

a2 : ð10Þ
The presence of the exterior boundary can also be useful for some problems for which outer boundary conditions must be
prescribed. This is especially true for problems with radiation where outgoing waves can be present.

To summarize, KADATH implements bispherical coordinates in the region defined by g� 6 g 6 gþ and Eq. (10). This cor-
responds to the region of space exterior to two spheres of radii r1 and r2 and distant from d and inside an outer sphere of
radius R. The center of the outer sphere coincides with the origin of the coordinates and is not freely specifiable. However,
if needed, Eq. (10) could be modified to accommodate any smooth outer boundary. Both the inside of the two inner spheres
and the exterior of the outer one, can be matched with spherical-like domains as those seen in Section 2.2 to describe the
desired physical space.

In order to perform numerical expansions, one needs to map the bispherical coordinates ðg;vÞ onto some numerical coor-
dinates ðgH;vHÞ. Unfortunately, with the region previously defined, this cannot be done simply using a single domain. The
bispherical region must be split into several domains, each of them being mapped onto squares of numerical coordinates. In
order to do the splitting the following types of domains are defined.

� The class Domain_bispheric_rect represents a rectangular domain in terms of ðg;vÞ. More precisely, g lies in between
two finite values gmin and gmax. It relates to the numerical coordinate gH by an affine-law
g ¼ gmax � gmin

2
gH þ gmax þ gmin

2
ð11Þ

so that gH 2 ½�1;1�. v goes from a lower boundary vmin up to p and relates to its numerical counterpart via

v ¼ vmin � p
� �

vH þ p ð12Þ

so that vH 2 ½0;1�. This choice of mapping will be justified by the chosen basis of decomposition in Section 3.2.2.

� The class Domain_bispheric_chi_first describes domains for which g is given as a function of v. v goes from 0 to a
boundary vmax and relates to vH by
v ¼ vmaxv
H ð13Þ

vH lies in ½0;1�. g goes from fixed value glim up to a variable bound f ðvÞ. The function f ðvÞ is given by the surface of exci-
sion (10) and is computed numerically. gH goes from ½�1;1� and is given by

g ¼ f ðvÞ � glim

2
gH þ f ðvÞ þ glim

2
ð14Þ
� In the class Domain_bispheric_eta_first, the variable v is given in terms of g. g is located between gmin and gmax and
relates to gH simply by Eq. (11). v goes a variable bound gðgÞ up to p. As for the domain Domain_bispheric_chi_first,

the function gðgÞ is defined by the excision shape. One then gets
v ¼ gðgÞ � pð ÞvH þ p ð15Þ

with vH 2 ½0;1�

In the three types of domains u coincides with the associated numerical coordinates and goes from 0 to p.
A set of five such domains is needed to describe the space between the two inner spheres and the exterior one. This is

done in the following way. Let us pick two sets of values ðg1;v1Þ and ðg2;v2Þ that lie on the excision region. This means that
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Fig. 1. Multi-domain decomposition of the bispherical space. The inner spheres have radii of 0:5 and 1 and are separated by a distance of 2. The radius of the
outer sphere is set to 4. The left panel shows the bispherical coordinates, along with the excision region around g ¼ 0 and v ¼ 0. The associated Cartesian
coordinates, in the ðx; yÞ plane, are shown on the right panel.

Table 1
Relation between the various domains of the bispherical space. The table shows to what correspond the boundaries of each domain. The labels are the same as
in Fig. 1.

Domain gH ¼ �1 gH ¼ 1 vH ¼ 0 vH ¼ 1

1 Left inner sphere Outer sphere x-axis Domain 2
2 Left inner sphere Domain 3 x-axis Domain 1
3 Domain 2 Domain 4 x-axis Outer sphere
4 Right inner sphere Domain 3 x-axis Domain 5
5 Right inner sphere Outer sphere x-axis Domain 4
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they correspond to circles on the exterior sphere. One will assume that g1 < 0 and that g2 > 0. The domain decomposition is
as follows, the labels of the domains are given in Fig. 1:

� One Domain_bispheric_chi_first for which 0 6 v 6 v1 (domain 1).
� One Domain_bispheric_rect for which v1 6 v 6 p and g� 6 g 6 g1 (domain 2).
� One Domain_bispheric_eta_first for which g1 6 g 6 g2 (domain 3).
� One Domain_bispheric_rect for which v2 6 v 6 p and g2 6 g 6 gþ (domain 4).
� One Domain_bispheric_chi_first for which 0 6 v 6 v2 (domain 5).

As already stated, spherical domains can be added to this decomposition to account for the interior of the inner spheres or
for the exterior of the outer one. This setting is shown in Fig. 1 both in the ðg;vÞ plane and in terms of Cartesian coordinates.
Table 1 shows to what correspond the boundaries of each domain. In particular, one can see that the mappings have be cho-
sen so that vH ¼ 0 always corresponds to the x-axis. This property will prove useful when regularity conditions will be en-
forced (see Section 3.4.3).

2.4. Cylindrical space

Standard three-dimensional cylindrical coordinates are currently not implemented in KADATH. The setting exposed in this
section is devoted to the study of critical phenomena in general relativity (see Section 7.2 and references therein). The sought
critical solution can be described on a two-dimensional space of cylindrical topology. If this setting is more specialized than
spherical or bispherical coordinates, it is presented here as an illustration of the ability of KADATH to deal with various
geometries.

The cylindrical space is described by the class Space_critic. The two coordinates are x that ranges from 0 to 1 and s
that goes from 0 to 2p. x relates to the height of the cylinder and s is the azimuthal angle. Near x ¼ 0 the fields of interest
are either symmetric or antisymmetric. In order to take this symmetry into account, space is split into two types of domains:

� Domain_critic_inner where x lies in ½0; xlim� and simply relates to the numerical coordinate xH by x ¼ xlimxH. xH covers
the interval ½0;1�.

� Domain_critic_outer where x is in ½xlim;1�. The numerical coordinate xH relates to x by an affine law
x ¼ ð1�xlimÞ

2 xH þ ð1þxlimÞ
2 and spans ½�1;1�.
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In both domains, the numerical angular coordinate sH coincides with s. Given the fact that the fields have some symme-
tries with respect to s ¼ p, it is possible to restrict sH to ½0;p½.

3. Spectral expansion

3.1. Generalities

An extensive discussion of spectral methods is beyond the scope of this work. Only the basic properties required for the
comprehension of the paper are presented. Refs. [1–6] could be useful for the reader interested in more details.

In the one-dimensional case, let f ðxÞ be a function on an interval K. Given a set of known orthogonal functions UiðxÞ on K,
spectral theory enables to construct an approximation of f in terms of a finite sum of the UiðxÞ. This sum is called the
interpolant of f and is expressed as:
INf ðxÞ ¼
XN

i¼0

aiUiðxÞ ð16Þ
where N is the order of the approximation. Typically, the basis functions are either orthogonal polynomials like Legendre or
Chebyshev ones, or trigonometrical functions. In this latter case, spectral theory is nothing but the theory of discrete Fourier
transform.

It can be shown that there exist N þ 1 points xi inside K such that f and its interpolant exactly coincide at those points
f ðxiÞ ¼ INf ðxiÞ ð17Þ
Those points are called the collocation points. In KADATH, one works with the so-called Gauss–Lobato points which ensure
that the boundaries of the interval K coincide with the first x0 and last xN collocation points.

Spectral theory provides a rule to compute the coefficients ai in terms of the values at the collocation points. Thanks to Eq.
(16), the reverse operation, that is the computation of the f ðxiÞ in terms of the ai, is also possible. So a function f can be de-
scribed either in terms of its coefficients or in terms of its value at the collocation points. Depending on the operation to be
performed on f, a description could be more useful that the other. One is working in the coefficient space when using the ai

and in the configuration space when considering the f ðxiÞ. The two descriptions are completely equivalent in the sense that
there is no information lost when going from one space to the other.

The most appealing feature of spectral methods is the very fast convergence of the interpolant INf to the real function f.
Indeed, it can be shown that, if f is a C1 function, then INf converges to f faster than any power-law of N. This is known as the
spectral convergence. In the case of analytic functions, the convergence is even exponential. Such fast convergence enables to
reach good accuracy with only moderate number of points, especially compared to other methods like finite difference
schemes. As already stated in Section 2.1 an appropriate multi-domain setting can usually ensure that the functions are
C1 in each domain even for globally less regular functions. Failing to do so will make the convergence only follow a
power-law. This is called the Gibbs phenomenon in the case of a discontinuous function.

3.2. Scalar fields

The choice of basis functions is crucial to the success of any spectral solver. Moreover it is often a very good way of check-
ing equations. Indeed, for complicated ones, where many terms are involved, all of them must end up having consistent ba-
sis. This section is devoted to the case of scalar fields. Higher order tensors are discussed in Section 3.3.

3.2.1. Spherical coordinates
In the case of spherical coordinates, the standard basis of decomposition of a scalar field is obtained by demanding that this

field can be expressed as a polynomial in terms of the Cartesian coordinates, as what is done in [15]. This condition prevents
the appearance of singularities on the axis and at the origin. In addition, one requires that the fields are either symmetric or
antisymmetric with respect to the plane z ¼ 0. This last assumption covers most of the situations of interest. By expressing the
Cartesian polynomials in terms of the spherical coordinates, one can get some constraints on the basis of expansion.

Given that no symmetry is assumed with respect to the azimuthal angle u, a standard discrete Fourier transform is per-
formed. The basis of decomposition consists of the trigonometrical functions cosðmuÞ and sinðmuÞ. The collocation points
are the ui ¼ 2p i

Nþ1 with 0 6 i 6 N.
Concerning the zenith angle h, the symmetry with respect to the plane z ¼ 0 is taken into account. This implies that the

collocation points are the hj ¼ p
2

j
N. The associated basis functions are trigonometrical functions of one given type and of one

given parity. The exact choice depends on both the function and the u basis. More precisely, for a symmetric function, one
uses even cosines cosð2jhÞ when the basis in u is such that m is even and odd sines sinðð2jþ 1ÞhÞ otherwise. For antisym-
metric functions, odd cosines are used for m even and even sines otherwise.

The basis with respect to the radial numerical coordinate rH depends on the type of domain. For both the shells and the
compactified domain, it is the standard Legendre of Chebyshev polynomials with the associated Gauss–Lobato collocation
points. In the nucleus, only polynomials of a given parity are considered, in order to impose some regularity at the origin.
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If the associated basis with respect to h is even (resp. odd), with either sines or cosines, even (resp. odd) polynomials are
used. This is true for both symmetric and antisymmetric functions. The collocation points are the Gauss–Lobato points that
are located in ½0;1�.

Let us note that with this choice of basis, not any function is a true polynomial of the Cartesian coordinates. The choice
made here is slightly less restrictive and has the advantage of being convenient and easy to handle. Additional regularity
conditions are discussed in Section 3.4

3.2.2. Bispherical coordinates
The same guidelines as in the spherical case are used to derive appropriate basis of decomposition. One demands that

scalar fields can be expressed as polynomials in terms of Cartesian coordinates. Once again, only symmetric or antisymmet-
ric functions with respect to the plane z ¼ 0 are considered. This gives the following constraints on the basis.

The angle u is expanded on cosines cosðmuÞ (resp. sines) for symmetric (resp. antisymmetric) functions. The associated
collocation points are the ui ¼ p i

N.
For the coordinate vH, due to regularity conditions on the x-axis, only polynomials (Chebyshev or Legendre) of some given

parity must be taken into account. The parity depends on the basis with respect to u. Even polynomials must be used when
m is even and odd otherwise. This can be seen in the expressions of the Cartesian coordinates given by Eq. (4). This is true for
both symmetric and antisymmetric functions. The collocation points are the Gauss–Lobato points that are located in ½0;1�.

The coordinate gH is expanded on standard polynomials, either Chebyshev or Legendre. The collocation points are the
usual Gauss–Lobato points and span the interval ½�1;1�.

As in the spherical case, this choice of basis is slightly less restrictive than what would be needed to get true Cartesian
polynomials (see Section 3.4 for more regularity conditions).

3.2.3. Cylindrical coordinates
As already stated, the functions considered in the critical phenomenon case (see Section 7.2) are either symmetric or anti-

symmetric with respect to x ¼ 0. To account for this fact, in the inner domain, only polynomials of the appropriate parity are
used, either Chebyshev or Legendre. The collocation points in terms of xH are the Gauss–Lobato points and are located in
½0;1�. In the outer domain, standard polynomials are used.

Some symmetry is also taken into account with respect to s ¼ p. If a function f is such that f ðsþ pÞ ¼ f ðsÞ then only even
trigonometrical functions are considered and f is expanded on both cosð2isÞ and sinð2isÞ. The other possibility is a function g
such that gðsþ pÞ ¼ �gðsÞ. In that case, only odd trigonometrical functions are used.

3.3. Higher rank tensors

For tensors, the choice of spectral basis depends on both the geometry and the tensorial basis. The simplest choice is the
one of a Cartesian tensorial basis. Let us precise that this choice can be made almost independently of the geometry, as long
as Cartesian coordinates are defined. For instance, a vector ~V can be described by its Cartesian components ðVx;Vy;VzÞ in
spherical geometry, meaning that each component is given in terms of ðr; h;uÞ.

Let us first turn to the case of a vector with a Cartesian tensorial basis. The appropriate basis are obtained by demanding
that this vector can be expressed as the gradient of a scalar field. Given this assumption, it simply follows the each compo-
nent can be expressed as a polynomial of the Cartesian coordinates. Thus each component behaves like a scalar field and the
same spectral basis are used. As far as the symmetry z ¼ 0 is concerned (for the spherical and bispherical cases), it is assumed
that the components x and y of the vector are symmetric and the z one antisymmetric (i.e. the vector is the gradient of a
symmetric scalar field). The same is true for higher order tensors in Cartesian tensorial coordinates for they can be obtained
as tensorial product of vectors. When needed, the appropriate z ¼ 0 symmetry is also obtained from this fact.

The case of a spherical orthonormal tensorial basis is also implemented, when one is working in spherical geometry. The
appropriate spectral basis of each component can be derived from the Cartesian case by making a careful use of the passage
formulae that relates the two basis. For instance, if the radial component of a vector behaves like a (symmetric) scalar, this is
not the case of the h one for which the spectral basis with respect to h involves even sines for m even and odd cosines other-
wise, as can be seen from the formula
Vh ¼ Vx cos h cos uþ Vy cos h sinu� Vz sin h ð18Þ
In the current state of KADATH, only Cartesian tensorial basis are implemented in the bispherical case. In the spherical case,
both Cartesian and orthonormal spherical tensorial basis are defined. The cylindric space only deals with scalars so far.
Additional cases will be implemented when needed.

3.4. Additional regularity conditions

3.4.1. Galerkin basis
As stated in Section 3.2, the spectral basis chosen do not ensure a complete regularity of the fields. Some additional con-

straints must be enforced by means of an appropriate Galerkin technique which goes as follows. The fields are not expanded
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onto any set of basis functions but only onto a subspace, which verifies the additional constraints one wishes to enforce. For
instance, let us consider a one-dimensional function f ðxÞ expanded onto even Chebyshev polynomials T2iðxÞ. To fulfill the addi-
tional constraint that f vanishes at x ¼ 0 it is possible to use the Galerkin basis of the Gi ¼ T2iþ2 þ ð�1Þiþ1. f is expanded onto the
Gi and thus, by construction, does verify the constraint f ð0Þ ¼ 0. Let us note that, in general, a Galerkin basis is not orthogonal.

3.4.2. Regularity on the context of spectral methods
Given the geometries present in KADATH, two types of regularity must be discussed. The regularity on one axis that must

be enforced in both spherical and bispherical cases and the regularity at the origin r ¼ 0 in the case of spherical coordinates
only. The main reason why those regularities must be carefully handled can be found in the way spectral methods compute
some ratios.

As an illustration, let us concentrate on the axis case in spherical coordinates. For many operators, some functions must
be divided by sin h. This is the case of the Laplacian of a scalar f where terms like cos h

r2 sin h
@f
@h do appear. The division by sin h can

be troublesome on the axis where it vanishes. In the case of spectral methods this difficulty can be overcome by working in
the coefficient space thus using the fact that the spectral approximation is not local. However, doing so, what is computed is

not the exact ratio of a function g by sin h (that would diverge for arbitrary function) but the regularized one R ¼ g�gðh¼0Þ
sin h . R is

obviously regular for any function g because the finite part of g on the axis has been taken out. It does coincide with the real
ratio if and only if g vanishes on the axis.

There is another way to look at this problem. When one computes the Laplacian of a function in spectral method, what is
actually computed is not the real Laplacian, but another operator that includes the finite parts on the axis. Those finite parts
cause the appearance of additional homogeneous solutions (typically solutions that do not vanish on the axis). Some exam-
ples of that can be found in [16], for the radial coordinate, either at the origin or at infinity. The extra homogeneous solutions
must be dealt with by enforcing additional conditions on the solution. If one fails to do so, the resulting system will not be
invertible. The additional conditions are what we refer as regularity conditions and are discussed in more detail in Sections
3.4.3 and 3.4.4.

3.4.3. Regularity on the axis
Let us first consider the case of a scalar field f in spherical coordinates. The regularity requires that f vanishes on the axis,

except for the m ¼ 0 case. Given the basis of decomposition discussed in Section 3.2.1 this can be enforced by using the
Galerkin basis cosð‘hÞ � 1 instead of standard cosines, when m – 0. When the basis with respect to h involves sines only,
there is no need to impose any additional condition. In the case m ¼ 0 the standard basis are used.

For higher order tensors the same guidelines as in Section 3.2.1 are used. When a Cartesian tensorial basis of decompo-
sition is employed, the regularity conditions for each component are the same as in the scalar case. With a spherical tensorial
basis, they are slightly different. Typically one can allow some components (the angular ones) to take non-zero values on the
axis for higher m. For instance, the component Vh of a vector ~V relates to the Cartesian components by the passage formula
(18). Given the regularity conditions for the Cartesian components, it is easy to see that Vh can be non-zero on the axis for
m ¼ 1.

In the bispherical case, the situation is very similar. As seen in Section 2.3, the axis is described by vH ¼ 0. For scalars or
Cartesian components of tensors, one demands that they vanish on the axis, for m > 0. When even Chebyshev (resp. Legen-
dre) polynomials are used, this is done by using the Galerkin basis: T2iðvHÞ þ ð�1Þiþ1 (resp. L2iðvHÞ � L2ið0Þ). When odd func-
tions are used, not additional condition is enforced.

3.4.4. Regularity at the origin
The situation at the origin in the case of a spherical geometry is more complicated. It can be shown that a true polynomial

of Cartesian coordinates would vanish as r‘ at the origin, where the h basis is cosð‘hÞ or sinð‘hÞ (see [15]). However this con-
dition is difficult to enforce exactly and, in some cases, has been found to generate instabilities.

As a first step one demands that for ‘ – 0 the functions vanish at the origin. When using even Chebyshev (resp. Legendre)
polynomials in r, this is done by using the Galerkin basis: T2iþ2ðrHÞ þ ð�1Þiþ1 (resp. L2iðrHÞ � L2ið0Þ). Nothing needs to be done
if odd polynomials are used. This choice of basis enforces the first order of the regularity at the origin.

However, this is not sufficient to ensure that usual second order operators like the Laplacian are well inverted. This is
related to the appearance of additional homogeneous solutions discussed in Section 3.4.2. The second order of the regularity
condition must be supplemented. This is done by demanding that the derivative with respect to r vanishes at the origin, for
‘ > 1. If this is automatically verified for even polynomials, this is not the case for odd ones. When dealing with odd Cheby-
shev polynomials a possible choice of Galerkin basis is given by T2iþ3 � T 02iþ3ð0ÞT1, for ‘ > 1 (and similarly for Legendre).

This choice has proven to be sufficient to ensure that second order differential equation are solved properly at the origin.
For higher order equations, there may be need to further strengthen regularity. Let us note that, contrary to the regularity on
the axis, the regularity conditions at the origin are the same for scalars or components of tensors. This comes from the fact
that the transformations that relate the Cartesian components to the spherical ones do not involve r (see for instance (18)).

The regularity on the axis must obviously also be enforced when the origin is present. This is resulting in a two dimen-
sional Galerkin basis for r and h. Putting all the pieces together, the appropriate basis of decomposition for a scalar field sym-
metric with respect to z ¼ 0, in a spherical nucleus would be
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� For u: the standard Fourier decomposition in cosðmuÞ and sinðmuÞ
� For h (regularity on the axis):

– cosð2jhÞ for m ¼ 0 ð‘ ¼ 2j)
– cosð2jhÞ � 1 for m even and m – 0 ð‘ ¼ 2jÞ
– sinðð2jþ 1ÞhÞ for m odd ð‘ ¼ 2jþ 1Þ
� For r (regularity at the origin):
– T2iðrHÞ for ‘ ¼ 0
– T2iþ1ðrHÞ for ‘ ¼ 1
– T2iþ2ðrHÞ þ ð�1Þiþ1 for ‘ even and ‘ – 0
– T2iþ3ðrHÞ � T 02iþ3ð0ÞT1 for ‘ odd and ‘ – 1.
Let us mention that if the regularity on the axis is routinely handled in the context of spectral methods, this is not the case
of the conditions at the origin. For many applications, like the meteorology simulations or the black holes with excision (see
Sections 7.3 and 7.4), the origin is not part of the computational domain. Even when the origin is present, various tricks are
usually employed to avoid dealing with regularity conditions. For instance, in [17,18] the region close to the origin is not
described by spherical coordinates but by Cartesian ones. In [19], the solution is sought in the configuration space with col-
location points that avoid the origin.

3.5. Effective number of unknowns

KADATH is designed to solve systems of equations in the coefficient space. Using such a setting the unknowns are the true
coefficients of the fields of interest. By true coefficients one means that some of them are irrelevant. For instance when using
a standard Fourier transform the coefficient of sinð0Þ is obviously meaningless. Some cases are less trivial. Indeed, the last
coefficient of an expansion in terms of odd Chebyshev polynomials is also irrelevant. This is related to the fact that the value
of such a function is, by construction, 0 at x ¼ 0. The value of the function is freely specifiable only at N � 1 of the N collo-
cation points. To maintain the bijection between the coefficient space and the configuration space one then needs to reduce
the number of true coefficients.

Moreover the regularity conditions discussed in Section 3.4 reduce furthermore the true number of unknowns. As already
stated, such additional conditions are imposed by a Galerkin method. This implies that the unknowns are not the coefficients
onto the standard basis of expansion but rather onto the Galerkin basis. The number of coefficients is then different, reflect-
ing the fact that the Galerkin basis contains informations about additional conditions. For instance, suppose one works with
N þ 1 coefficients in terms of even Chebyshev polynomials so that the function is expanded onto the T2i with 0 6 i 6 N. Sup-
pose now that the Galerkin basis T2iþ2ðrHÞ þ ð�1Þiþ1 is used to enforce that the function vanishes at the origin (like in Section
3.4.4). It is easy to see that, in order to keep the same degree of approximation (i.e. to truncate the series to the same order in
terms of the polynomials), one needs to go only up to i ¼ N � 1. This is a general feature of the Galerkin method.

The true number of coefficients and so the number of true unknowns is determined by KADATH by making use of the type
of field considered (scalar, vector, rank-2 symmetric tensor. . .), the symmetry, the tensorial basis and the geometry. Such
computation is automated and should be transparent to the user.

4. Setting equations

4.1. The weighted residual method

The usual way of solving partial differential equations in the context of spectral methods is based on the framework of the
weighted residual methods (see for instance [7] for a more detailed presentation). Let us consider an equation written for-
mally as R ¼ 0. R is a general function on the space of interest. For instance, if one needs to solve a simple Poisson equation,
one would have R ¼ Df � S, where S is the source and f the unknown field. Obviously, more complicated, non-linear cases
involving several unknown fields are possible. The weighted residual method translates the functional equation R ¼ 0 into
a finite set of discrete equations by demanding that the scalar product ðR; nÞ of R with respect to some test function n van-
ishes. The scalar product is the same as the one used to define the spectral expansion.

Depending on the choice of test functions one generates different methods. KADATH mainly implements the variant
known as the s-method. In this case the test functions are the same as the spectral basis ones. Suppose that R is expanded
onto the n by R ¼

P
CðnÞn;C being the coefficient corresponding to the basis function n. The sum is taken on all the dimen-

sions, up to the desired order of approximation. One can then show that the residual equations ðR; nÞ ¼ 0 is equivalent to
demanding that CðnÞ ¼ 0. Doing so, one then obtains as many equations as the total number of basis functions. In the
s-method, the equations corresponding the last coefficients can be relaxed and replaced by equations that describe appro-
priate matching between the domains and boundary conditions. The exact number of equations that must be relaxed
depends on both the geometry and the equations themselves.

As mentioned is Section 3.4, when regularity conditions must be enforced, a variant of the s-method known as the
Galerkin method is used. In this framework, the fields are expanded onto the Galerkin functions G. However the residuals
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R are expanded onto the standard basis. In the Galerkin method, the test functions are the Galerkin ones. One then gets as
many equations as the number of Galerkin functions, formally written as ðR;GÞ ¼ 0. One can show that such equations are
linear combinations of the coefficients of R which depend on the Galerkin basis used. As for the s-method, some equations
can be relaxed to enforce additional conditions.

To summarize, one can say that KADATH solves equations in the coefficient space. Standard s-method is used to impose
appropriate matching and boundary conditions. When regularity conditions must be enforced, this is done by means of a
Galerkin method.

4.2. Equations for the fields

The discretization of the field equations by means of the s and Galerkin methods are implemented by the class Equation
and its derived classes. Given the knowledge of the geometry and the type of equation, those objects are able to produce the
appropriate number of discrete residual equations.

The most widely used derived class is called Eq_inside. It deals with equations that must be solved inside a given do-
main, for instance a Poisson equation of the type Df � S ¼ 0. For each type of domain, the s or Galerkin residual equations can
be generated. Depending on the number of boundaries, several equations are relaxed in order to impose matching and
boundary conditions. By default Eq_inside assumes that the equation to be solved contains second order derivative of
the fields. For first order equations (resp. zeroth order) one would use the related class Eq_one_side (resp. Eq_full).

Boundary conditions are encoded in the class Eq_bc which must be supplied with the domain and the type of boundary. s
or Galerkin method of appropriate dimensions are constructed by this class. For instance, the boundary conditions on a
sphere are written with a two-dimensional Galerkin method with respect to the angles ðh;uÞ, in order to account for the
regularity conditions on the axis.

The class Eq_matching is used to impose the matching of quantities across the boundary between two domains. This is
done in the coefficient space and so must be used only when the basis relative to the surface is the same on both side of the
boundary. This may seem restrictive but it covers most of the geometries implemented in KADATH, at least when the same
resolution is used in each domain. This is the case for all the boundaries of the spherical geometry but not for the boundary
between the bispherical domains and the spherical compactified one (see Section 2.3). In most of the cases the quantity to be
matched is simply an unknown field or its normal derivative. Nevertheless it is possible to impose the matching of different
quantities across the boundary. This would be useful in the case where different variables are used in different domains (see
an example in Section 7.2).

When the basis are not the same across the boundaries, because of different geometries or different resolutions, one must
use the class Eq_matching_non_std that performs the matching in the configuration space. In this case, given the fact that
the collocation points are usually different on the two sides of the boundary, one must choose the set of points at which the
matching conditions are written. It is up to the user to make sure that this choice is consistent and leads to a global problem
that is not over or under-determined.

4.3. Integral equations

KADATH also enables to impose global conditions on the fields. One could prescribe the value of the total energy content of
space or the integral of a given field on some surface, for instance. If the associated equations are computed in terms of the
coefficients of the fields, they are not functional equations and do not require the machinery of the weighted residual meth-
od. They simply translate into additional conditions that must be fulfilled by the fields.

In order to ensure that the full system contains the same number of unknowns than conditions, integral equations are
generally associated with global unknowns. This is for instance the case of black holes, where the local rotation rate is an
unknown that is constrained by demanding that a global quantity, the spin, takes a given value (see Section 7.3). Another
example is found in the critic solution case of Section 7.2, where the period of the solution is sought by imposing that
one of the modes of one of the fields vanishes at the center.
5. Solving the system

5.1. Newton–Raphson iteration

It follows from the techniques described in Sections 3 and 4, that the solver translates a system of functional equations
into a finite set of algebraic ones. In general, those equations are non-linear and KADATH relies on the well-known Newton–
Raphson technique to find a solution (as in [9,10]). Let us consider a set of unknowns, formally denoted by the vector~u. The
system of equation can be written as~f ð~uÞ ¼ 0. Obviously the vectors ~u and~f must have the same size.

The solution is sought by iteration, starting from an initial guess ~u0. Let us denote ~un the approximation of the solution
found after nth iterations. The Newton–Raphson scheme proceeds as follows. First one computes the vector~f n ¼~f ð~unÞ. If~f n is
small in some appropriate sense (for instance the maximum norm is smaller than a given threshold), then~un is good enough
solution. If not, one needs to compute the Jacobian matrix Jn of the system defined as:
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Jn
ij ¼

@fi

@uj
~unð Þ ð19Þ
where fi and uj denote to the ith and jth components of~f and ~u, respectively. One row of the Jacobian corresponds to one
equation, and one column to the derivation with respect to one of the unknowns. The matrix is computed at the position
of the current solution ~un and so must be recalculated at each iteration.

The linear system
Jn~Xn ¼~f n ð20Þ
must then be solved and the next approximation of the solution is given by~unþ1 ¼~un �~Xn. The method is known to converge
rapidly to the solution, at least if the initial guess is good enough. For linear systems, the Newton–Raphson method finds the
solution in one iteration step.

5.2. Automatic differentiation

For simple problems it can be possible to explicitly derive an analytic expression of the Jacobian matrix from the knowl-
edge of the equations~f . This can be done by making use of some software that can do symbolic computations. Such analytic
expression can then be fed to the code and used to compute the Jacobian. However, in practice, that can be tricky when the
equations are complicated, especially if their explicit expressions in terms of the unknowns are intricate (this is especially true
for Section 7.4, where an explicit expression of the equations in terms of the spatial metric would be almost impracticable).

In the context of KADATH, the computation of the Jacobian is done numerically by a technique of automatic differentiation
based on the notion of dual numbers. Each quantity x is supplemented by its infinitesimal variation dx. The new object is
usually denoted as hx; dxi. The arithmetic of those dual objects is then implemented in order to accommodate the usual rules
for differentiation. For instance one gets:
hx; dxi þ hy; dyi ¼ hxþ y; dxþ dyi ð21Þ
hx; dxi � hy; dyi ¼ hxy; xdyþ ydxi ð22Þffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; dxi

p
¼ h

ffiffiffi
x
p

;
dx

2
ffiffiffi
x
p i ð23Þ
Let us consider a set of values~u of our unknowns and let us supplemented it with a set of infinitesimal variations d~u. Using
the extended algebra one can apply the system of equations~f to <~u; d~u >. This would result in the following extended object
h~f ð~uÞ; d~f ð~u; d~uÞi. The first part~f ð~uÞ is the usual application of the system of equations to~u and would be used to get the term
~f n in the Newton–Raphson iteration (see Section 5.1).

One can show that the second part d~f is a vector that is the product of the Jacobian with the vector d~u so that:
d~f ~u; d~uð Þ ¼ J ~uð Þð Þ � d~u ð24Þ
The use of the dual numbers enables to automatically compute the product of the Jacobian with any vector. In order to com-
pute the whole Jacobian matrix, one then proceeds as follows. First the unknowns are supplemented with a variation vector
that is zero except at the ith component which is set to one. The system of equation is applied, in its extended form, to this
object. The variation of the result is then, by construction, the ith column of the Jacobian. By taking all the possible values of i,
the whole matrix can be generated.

5.3. Parallelization and linear system solvers

The size of the linear system (20) is the same as the total number of unknowns. If one considers Nf scalar fields, in Nd

domains of d dimensions and if N is the number of coefficients of the spectral expansion in each dimension, then the Jacobian
is an ðm�mÞ matrix with m � Nf NdNd. This number can be quite large, especially in three dimensions. For instance, for
Nf ¼ 5; Nd ¼ 6; d ¼ 3 and N ¼ 21, which are big but not huge numbers, one would get m J 250;000. The resulting matrix
would represent more than 500 GB of data. Such amount of data would be difficult to store on a single processor, without
mentioning the number of operations required for the inversion.

There are several ways to overcome the difficulty of dealing with such big matrices. One solution is to use an iterative
technique to solve the system (20) (see [20] for a general introduction to the iterative techniques and [9,11] for some appli-
cations). Doing so, the solution of the linear system is sought in a loop that does not require the storage of the full matrix J. It
is only needed to be able to compute the product J~x for any vector x. If this is exactly the information that is available from
our automatic differentiation technique (see Section 5.2), KADATH, in its current state, does not use this kind of algorithms.
Indeed, the tests conducted with the iterative solvers, in the context of KADATH, showed a lack of stability, meaning that the
convergence was achieved only for some problems and only for moderate degrees of freedom. The reason for that must prob-
ably be sought in the preconditioning step. Indeed, the success of the iterative algorithms relies on the knowledge of an effi-
cient preconditioning matrix that approximates J�1. If some preconditioning techniques have been successfully used in the
context of spectral methods like in [9,11], they are only applicable when working in the configuration space, which is not the
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case of KADATH. Nevertheless, for very large problems, it is likely that the use of iterative techniques would be highly desir-
able. This is why their implementations will be an important axis of future development of the library.

That being said, in its current state, KADATH relies on a direct method to invert the linear system. In order to deal with
very large matrices, distributed algorithms are available. Typically, each processor has the knowledge of only some parts
of the matrix. In this context, a parallelization of KADATH is straightforward and is done via MPI. Indeed, the Jacobian is com-
puted columns by columns, each computation being independent of the other. Each processor computes and stores a man-
ageable set of columns. The size of the Jacobian is only limited by the total amount of memory available. This part of the
computation is perfectly linear in terms of the number of processors.

After having tested several libraries, it appeared that a parallel version of LAPACK called Scalapack [21], was the best
suited. However, before calling the function that computes the solution the linear system, a redistribution of the matrix
amongst the various processors must be done. The reason for this is purely computational and its goal is to ensure a better
behavior of Scalapack algorithms. Let us precise that Scalapack library does provide the function needed to do this redis-
tribution. The LU decomposition of J itself does not require more memory than what is needed to distribute the Jacobian
across the various processors. Concerning the computational time, it has been observed that the resolution of the linear sys-
tem takes roughly as much time as what is needed to compute the Jacobian itself, at least for the cases exhibited in Section 7.

For small problems (typically 2-dimensional problems in low resolution), a sequential version of KADATH can be used,
where the linear system is solved using the standard LAPACK library [22].
6. User interface

If KADATH is a rather intricate tool, a great effort has been made in its design to render its use as simple as possible. This is
especially true in the way the equations are passed to the solver. In this section the various steps in which KADATH should
usually be called are briefly summarized. KADATH is written in C++ and it is probably best if the user has at least some knowl-
edge of this language. What follows does not constitute an extensive documentation of the library but is intended to give a
feeling of what a typical use of KADATH is. For more details, the would-be user is strongly advise to take a look at the codes
that have be made available in KADATH repository (this is the case of the four examples discussed in Section 7).

The first step is to specify the geometry of space. This is done by calling the constructor of one of the derived classes of
Space (see Section 2). Various parameters describing the geometry are required at this point, like the number of shells for a
spherical space, or the various radii involved in a bispherical one. The constructor must also be supplied with the required
resolution (i.e. the number of points) and the type of polynomials to be used (Legendre or Chebyshev).

On the desired geometry, the user needs to define the fields of interest. They can be of various type, scalars, vectors, high-
er order tensors, metric tensors, etc. As the solution is sought by iteration, those objects are usually set to some initial guess.
The choice of the initial values depends very much on the problem. It can come from reading data from another code or by
finding appropriate analytic expressions. A crucial point of this step is to affect each field with its correct spectral basis of
decomposition. For most cases, KADATH provides functions that do this automatically but the user should make sure that
those functions are appropriate for each given problem. Failing to provide the right basis will either cause the solver to abort
(if it needs to sum two quantities with incompatible basis for instance), or cause the appearance of Gibbs-like phenomenon
(if a general function is expanded onto symmetric basis for instance).

All the informations needed to solve a system are contained in the class System_of_eqs. It is constructed from the space
of interest and can be supplied with the domains on which the system is to be solved, in case the values of fields are not
defined on the whole space. The list of variables and constants are then passed to the system. By variables one means quan-
tities that are unknowns and that must be solved for, whereas constants are quantities that can appear in the equations but
have fixed values. Both type of objects can be either fields or numbers. Each variable and constant must be a quantity that
has been initialized beforehand. Each of them is supplied with a character string that is the name by which it will by recog-
nized in the equations. A special field is the metric one, when defined, for which additional functionalities are available (ten-
sorial indices manipulation, covariant derivative, etc.)

The equations are passed to the System_of_eqs as character strings. Those strings are read by KADATH to generate the
appropriate computation rules. The formalism used is inspired by LateX [12], especially in the way indices are handled. Ein-
stein’s convention of summation on repeated indices is used (for instance, in the 3-dimensional Cartesian case,
fi � gi ¼ fxgx þ fygy þ fzgzÞ. Various reserved words are available to encode some functions like sqrt that stands for the square
root, dn for the normal derivative with respect to one surface, or R for the Ricci scalar of a given metric. When a quantity
appears many times in the equations, it can be made into a definition. Apart from the fact that it can simplify the writing
of the equations, it has the advantage that definitions are computed only when the value of the variables change, and not
each time they are encountered, thus resulting in a faster computation. When setting the equations, the user must not only
make sure they are correct but also that they give raise to as many conditions as the number of unknowns, in order to get an
invertible system. This can be tricky at times, especially when different resolutions are used in different regions of space. In
some standard cases, member functions of the Space class provide means to implement equations in the whole space in-
stead of passing them domain by domain.

Finally a solution of the system is sought, calling the member function do_newton, the required accuracy being passed as
a parameter. At this point KADATH verifies that the number of unknowns is consistent with the number of equations before
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entering the Newton–Raphson loop. Once convergence is achieved, the various data can be saved, manipulated, results
printed, etc.
7. Test problems

In this section, four different problems are presented. The main goal is to illustrate the ability of KADATH to deal with dif-
ferent and complicated situations. The examples have been chosen to show various and different aspects of KADATH. Nev-
ertheless, they are far from being merely test problems. They all related to very contemporary physics. That being said,
this paper is not the place to extensively discuss physics and so explanations about this are kept to the minimal level re-
quired for comprehension. Given the current limitations of KADATH, the four problems have in common the fact that they
all are boundary value problems on a fixed and known geometry. The results shown below were obtained by using Cheby-
shev polynomials. The results were roughly the same with Legendre polynomials, even if the observed convergence seems to
be slightly slower in this case.

Computations were conducted on a cluster of 10 quadcore bi-opterons at 2.5 GHz. Each node has 16 Go of RAM and the
cluster runs under Linux. Under those conditions, the biggest Jacobian invertible has a size just below 100;000 and it takes
4 h to do the inversion. Most of the codes used to compute the following results are available from the Codes/Par_version
repository of KADATH.

7.1. Vortons

In classical field theory, some closed vortex loops can exist. Such loops are stabilized either by twisting them, in which
case one talks about knots, or by centrifugal force when the vortex is spinning. This last case is called a vorton (see [23] for a
review on this type of objects). In this section, vortons are computed in the so-called Wittens theory [24]. In this model,
superconducting cosmic strings are known to exist. They are, basically, straight configuration of the fields. The idea behind
vortons is to try to cut a piece of a string, make it into a loop and try to stabilize it by giving it a spin. If this idea dates back to
[25,26], it is only recently that the such solutions were explicitly computed in [23].

From a mathematical point of view, vortons are described by two complex scalar fields / and r. The vorton is computed
by demanding that r takes the particular form
r ¼ Z exp i muþxtð Þ½ � ð25Þ
where Z is a real function, m is the azimuthal winding number that constraints the topology of the vorton, u is the angle
around the axis of the loop and x is the angular velocity. No particular ansatz is assumed for the other field that is described
by its real and imaginary parts: / ¼ X þ iY .

The geometry of the solution is such that the fields are axisymmetric. Moreover, X and Z are symmetric with respect to the
plane z ¼ 0 and Y is antisymmetric. Let us note that from the point of view of KADATH, Z is not a scalar field but rather the
harmonic m of a scalar field (i.e. Z cosðmuÞ is the real scalar field). This has to be taken into account when setting the appro-
priate spectral basis. This also changes the regularity conditions on the axis, where Z must vanish, which would not be the
case for a real scalar field (see Section 3.4 for more details). Given the geometry, the problem is defined on a polar space by
the class Space_polar (see Section 2.2).

Under those assumptions, the three unknown fields obey a set of three elliptic equations:
DX ¼ k/

2
X2 þ Y2 � 1
� �

þ cZ2
� �

X ð26Þ

DY ¼ k/

2
X2 þ Y2 � 1
� �

þ cZ2
� �

Y ð27Þ

DmZ ¼ kr

2
Z2 � g2

r

� �
þ c X2 þ Y2
� �

�x2
� �

Z ð28Þ
where Dm is the Laplacian of the mth-component of a scalar field, so that DmZ ¼ DZ � m2Z
r2 sin2 h

. This expression shows that Z

must vanish on the z-axis. At spatial infinity the fields are such that X ¼ 1; Y ¼ 0 and Z ¼ 0.
The equations are passed as such to KADATH. Being second order differential equations, matching of the fields and of their

normal derivatives is performed at the boundaries between the various domains. The main difficulty in finding solutions lies
in the fact that the system involves many free parameters k/; kr; c; gr; x and m. It is believed that solutions only exist in
some parts of this huge parameter space. Another difficulty is related to the existence of trivial solutions (like X ¼ 1; Y ¼ 0
and Z ¼ 0 in the whole space). If one does not start the solver from a good enough initial guess, then the interesting solutions
will be missed. For those reasons, it is quite an achievement that the authors of [23] did identify an appropriate region of the
parameter space and were able to compute the associated vortons.

The results presented in this section aim at reproducing some of the results obtained in [23] in the case m ¼ 2. The other
parameters are as follows k/ ¼ 41:12; kr ¼ 40;gr ¼ 1 and c ¼ 22:3. One configuration computed in [23] is used as an initial
guess and a sequence of configurations rotating at different speeds is then constructed by slowly varying x. The precision
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Fig. 3. Fields X; Y and Z (from left to right) for x ¼ 0:85. The other parameters are the same as in Fig. 2. The continuous (resp. dashed) lines show constant
positive (resp. negative) value of the fields.
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reached by the code is asserted by computing the deviation of the solutions with respect to some virial theorem. The virial

error is defined as 1� 3ðx2N�E0Þ
E2

(see Eq. (6.159) of [23]). N ; E0 and E2 are integrals of the fields which explicit expressions are

given by Eqs. (6.154) of [23]. The virial error is shown in the left panel of Fig. 2, as a function of x, for three different res-
olutions. The convergence of the virial error is rapid, as expected with spectral method. The error is below 10�5 in the whole
range of x, for the highest resolution.

The right panel of Fig. 2 shows the total energy E an the Noether charge Q of the vortons, as a function of x, as defined by
Eqs. (6.155) and (6.157) of [23]. The results are consistent with Fig. 30 of [23]. For the low values of x, one is limited by the
fact that the vortons are bigger and bigger. One would need to use more domains to get to smaller x. At the higher end, there
seem to be a transition from the vorton solutions to solutions for which Y ¼ 0 in the whole space. This transition prevents the
code from reaching as high values of x as in [23], for a yet unknown reason. Fig. 3 shows contours of constant values for the
fields for x ¼ 0:85. Let us finally mention that vortons with m ¼ 1 were also successfully computed. From the numerical
point of view, they mainly differ from the m ¼ 2 case from the fact that the basis of decomposition for Z is different.

7.2. Critical collapse

Critical collapse was first observed in [27] when computing the evolution of a spherically symmetric massless scalar field
in general relativity. In the weak field regime the field disperses at infinity whereas, in the strong field regime, a black hole is
formed via gravitational collapse. Just at the threshold between those two cases, another type of solution appears. It is a
naked singularity and is called the critical solution. It has many interesting properties and we refer the reader to [28] for
a review on this subject. The structure of the critical solution for a scalar field collapse has been extensively studied, for in-
stance in [29,30]. This section is devoted to the computation of the critical solution by KADATH.
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As stated in [30], the critical spacetime can be found as the solution of a 2-dimensional non-linear problem. Coordinates
can be chosen such that one spatial variable x goes from 0 to 1 and one periodic variable s goes from 0 to 2p. s is the time
coordinate. From the geometrical point of view, the space of interest is a cylinder. The relevant class in KADATH is called
Space_critic and is described in detail in Section 2.4. In order to take into account some symmetries at x ¼ 0, this space
is separated into two domains.

The solution involves four fields, two describing the matter U and V and, two for the gravitational field, f and a. The fields
have some symmetries with respect to s ¼ p so that one can restrict s to ½0;p½. More precisely aðsþ pÞ ¼ aðsÞ (idem for f)
and Uðsþ pÞ ¼ �UðsÞ (idem for V). Some symmetries are also present at x ¼ 0 where the metric fields f and a are even func-
tion. Some combinations of the matter field are also even and finite at x ¼ 0: P ¼ ðV þ UÞ=ð2xÞ and W ¼ ðV � UÞ=ð2x2Þ.

In order to take the symmetry at x ¼ 0 into account, different sets of unknowns are used in different regions of space. In
the inner domain, one works with P and W and in the outer one with U and V. Doing so, the various fields are expanded into
the appropriate spectral basis of decomposition, as described in Section 3.2.3.

In the outer domain, the equations are given by
Table 2
Constru
outer g
text.

Field

a
f
matt
xf;x ¼ a2 � 1
� �

f ð29Þ

x a�2� �
;x ¼ 1� 1þ U2 þ V2

� �
a�2 ð30Þ

x f þ xð ÞU;x ¼ f 1� a2� �
U þ V

	 

� 2p

D
xU;s ð31Þ

x f � xð ÞV ;x ¼ f 1� a2� �
V þ U

	 

þ 2p

D
xV ;s ð32Þ
where D is the period of the solution that will be discussed later.
In the inner domain, one gets
xf;x ¼ a2 � 1
� �

f ð33Þ

x a�2� �
;x ¼ 1� 1þ 2x2P2 þ 2x4W2

� �
a�2 ð34Þ

x f 2 � x2� �
P;x ¼ �P f 2 � x2� �

þ f 1� a2� �
fPþ x2W
� �

þ f fP� x2W
� �

þ 2p
D

x2 fW;s þP;sð Þ ð35Þ

x f 2 � x2� �
W;x ¼ �2W f 2 � x2� �

þ f 1� a2� �
fWþPð Þ þ f P� fWð Þ þ 2p

D
fP;s þ x2W;s
� �

: ð36Þ
The equations are first order differential equations. The variable s being periodic, no boundary conditions is needed. The sit-
uation with respect to x is more complicated because some of the factors in front of the derivative vanish at the boundaries.
The appropriate number of boundary conditions must be determined by a precise examination of the equations.

Let us first turn to the variable a. On the side x ¼ 1 of the cylinder, Eq. (30) is not degenerated, so that it is treated in the
standard way, that is standard first order s-method (see Section 4.1). At the inner boundary however, Eq. (34) is degenerated
and becomes a2 ¼ 1. The equation has to be treated by a s-method of zeroth order (all the residual equations are kept). In a
sense the equation is its own boundary condition.

For the other metric field f, in the outer region, the situation is also the standard one. In the inner part, Eq. (33) is also degen-
erated and becomes f ða2 � 1Þ ¼ 0. As previously seen, this condition is already accounted for by the equation for a at x ¼ 0.
This implies that the degeneracy is not effective and that Eq. (33) must be treated by a standard first order s-method. So
the field f does require a boundary condition on one side of the cylinder. It is physically motivated and simply is f ðx ¼ 1Þ ¼ 1.

Given this value of f at the outer side, one of the equations for the matter fields equation (36) is actually degenerated and
equivalent to the regularity condition (20) of [30] (the sign in [30] is faulted by a typo). On the inner side equation (35) is
degenerated but equivalent to f 2Pð1� a2Þ ¼ 0 and is already accounted for by the equation for a. The other matter equation
(36) is also degenerated and gives a true condition fP� 3f 2Wþ 2p=DfP;s ¼ 0. So, concerning the matter fields, no additional
boundary conditions are needed for there are two degeneracy conditions (one on each side), for two fields.

As one is dealing with first order equations, the fields themselves must be matched at the interface between the two
domains. This study is slightly technical but it ensures that the constructed global system of equations is well-posed and
ction of a well-posed problem. The columns x ¼ 0 and x ¼ 1 summarize the behavior of the equations at the boundaries. The columns labeled inner and
ive the order of the associated s-method. The matching conditions at the interface are also given. More details about this can be found in the core of the

x ¼ 0 Inner Matching Outer x ¼ 1

dege. ) a2 ¼ 1 0th: a� ¼ aþ 1st non dege.

dege. () a2 ¼ 1 1st f� ¼ fþ 1st f ¼ 1
er P: dege. () a2 ¼ 1 For P: 1st 2xP� ¼ Vþ þ Uþ U: 1st U: non-dege.

W: dege. W: 0th 2x2W� ¼ Vþ � Uþ V: 0st V: dege.
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invertible. The final situation is summarized in Table 2. Let us mention that such complicated setting (non-trivial matchings,
different order in the s-method. . .) can be easily encoded in KADATH.

Along with the field equations, there is also a global condition that constraints the value of D and that demands that the
mode corresponding to cosð2sÞ in the expansion of f vanishes at x ¼ 0. This last condition falls into the category of the inte-
gral equations discussed in Section 4.3. It is believed that the equations are very sensitive to the initial guess and that they
will fail to converge to the critical one if one starts too far from it. This is the reason for using the solution computed in [30] as
a starting point of the Newton–Raphson iteration. The errors that appear when passing data from one code to the other intro-
duce enough numerical noise to make the loop do a few iterations.

The precision of the code is assessed by comparing the value of the period D to the one given by Eq. (58) of [30]. The rel-
ative difference between the two is shown in the left panel of Fig. 4, as a function of the number of points in each dimension.
The convergence is satisfactory even though it is difficult to state that the evanescent regime has been reached. Let us note
that the convergence of the solution is significantly slower than for other problems, an accuracy of 10�8 being reached with
as many as 96 points in both dimensions. This is expected, given the strong gradients appearing in the fields. Those gradients
are responsible for a rather low decay of the coefficients of the spectral expansions. This was already observed in [30] and
can be seen in their Figs. 8 and 9. As an illustration, some fields at both sides of the cylinder are shown in the right panel of
Fig. 4. This plot is the equivalent of Fig. 4 of [30], except for the definition of the coordinate s. In [30], the temporal coordinate
s goes from 0 to D, whereas in this work, s=D is used so that our coordinate goes from 0 to p, once the symmetry at half-
period is taken into account.

7.3. Binary black holes

There is a long history of works that aim at computing the structure of spacetimes that contain a system of binary black
holes. Amongst the many reasons to study such systems, one will mention the fact that they are known to be good emitters
of gravitational waves and so are one of the main target for the gravitational wave detectors currently in operation [31]. Bin-
ary systems have also a great interest in the context of galaxy formation. Indeed, it is believed that nowadays galaxies have
been formed by successful mergers of smaller galaxies. When the merger occurs, the black holes present at the center of the
smaller galaxies will become bounded and form a binary system [32].

Under the influence of gravitational radiation, two black holes will not remain on closed orbits but rather spiral towards
each other, until they merge into a single object. This process occurs in the strong field regime of gravitation and must be
described in the context of general relativity. Most of the simulations are performed in the 3 + 1 formalism where a splitting
of space and time is introduced [33]. The main effect of this splitting is to separate Einstein’s equations into two sets: (i) the
constraint equations that do not involve time and (ii) the evolution equations that contains Dalembert type operators. Doing
so, the simulation of a binary system proceeds in two separate steps. First, one needs to produce a initial configuration that
must satisfy the constraint equations and that represents the physics of interest as accurately as possible. This is known as
the initial data problem [34]. In a second step the behavior of the fields at latter times is obtained by using the evolution
equations. Let us mention that if the constraint equations are fulfilled at the initial time, they are verified at all time steps,
if the evolution equations are used properly.

In this section, one is interested in preparing an initial configuration that represents two black holes in quasi-circular or-
bit along the same lines as in [35]. Even if true circular orbits cannot exist due to gravitational radiation, it is believed to be a
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rather good approximation, at least when the black holes are relatively far apart. Technically this is done by imposing the
existence of an helical Killing vector (see for instance [36,37] and references therein). Another approximation usually done
in this context is the so-called conformal flatness approximation (see below for a precise definition). This has more to do
with the substantial mathematical simplification that results than with any physical motivation. It was once believed that
the conformal flatness approximation would minimize the amount of spurious radiation in the data sets but it turned out not
to be the case. Nevertheless, the approximation leads to a consistent mathematical problem, especially as far as the behav-
iors of the fields at infinity are concerned [37].

In the 3 + 1 formalism, the 4-dimensional metric glm that describes the system is expressed in terms of purely spatial
quantities. More precisely the line element is given by
ds2 ¼ glmdxldxm ¼ � N2 � NiNi

� �
dt2 þ 2Nidtdxi þ cijdxidxj ð37Þ
where the Greek indices are 4-dimensional and run from 0 to 3 and the Latin ones are purely spatial and go from 1 to 3. The
3 + 1 quantities that describe the geometry are one scalar N the lapse, one vector Ni the shift (three independent functions)
and one spatial metric cij (six independent functions). The conformal flatness approximation states that the spatial metric
relates to the flat metric by a single scalar conformal factor W. More precisely one demands that
cij ¼ W4fij ð38Þ
where fij is the flat metric. This condition is only an approximation and it is not believed to be exactly true.
In this setting, the unknowns are the fields N; W and Ni. The associated equations are obtained from Einstein equations by

enforcing stationarity (i.e. the time derivative are set to zero). It gives a set of five elliptic equations:
DiD
iN ¼ �2

DiWDiN
W

þ NW4AijA
ij ð39Þ

DiD
iW ¼ �W5

8
AijA

ij ð40Þ

DjD
jNi þ 1

3
DiDjN

j ¼ 2Aij DjN � 6N
DjW
W

� �
ð41Þ
where D is the covariant derivative with respect to the flat metric. fij is also used to raise and lower indices of tensors. Aij is
the conformal extrinsic curvature tensor and represents the way the three metric is embedded in the 4-dimensional geom-
etry. From the mathematical point of view it is defined as being
Aij ¼ 1
2N

DiNj þ DjNi � 2
3

DkNkf ij

� �
ð42Þ
The elliptic equations must be supplemented by appropriate boundary conditions. At infinity, it is demanded that flat space-
time is recovered which implies that
N ¼ 1; Ni ¼ 0 and W ¼ 1 when r !1 ð43Þ
The inner boundary conditions are enforced on two spheres that represent the black holes themselves. They are basically
obtained by demanding that those two spheres are apparent horizons in equilibrium (see [38] for a review). Those
inner boundary conditions enforce the presence and the physical properties of the holes. On the sphere Sa ða ¼ 1 or 2),
one gets
NjSa ¼ n0 ð44Þ
@W
@r
þ W

2r
jSa ¼ �

W3

4
Aijsi

asj
a ð45Þ

NijSa ¼
n0

W2 si
a þXMi

a þXami
a: ð46Þ
Eq. (44) is just a choice of time coordinate on the spheres and n0 is a constant (in this section one takes n0 ¼ 0:1). Eq. (45)
translates the fact that the spheres are apparent horizons. si

a is the unit vector normal to the sphere which reads
ðxa=ra; ya=ra; za=raÞ in Cartesian coordinates centered on the sphere a. Eq. (46) states that the spheres are in equilibrium
and also contains information about the state of rotation of the holes. X is the orbital velocity of the system and Mi

a the con-
stant vector ð0;Xa;0Þwhere Xa is the coordinate distance between the center of mass and the center of the hole a. This part of
the boundary condition accounts for the orbital motion of the holes. Xa is the local rotation rate of the black hole a and it is
associated to the local vector mi

a ¼ ð�ya; xa;0Þ. This last part accounts for the spins of the objects.
X and the two Xa are global unknowns that must be constrained by additional equations, as discussed in Section 4.3. The

proper value of the orbital velocity is obtained by demanding that two integral quantities, the Komar mass and the ADM
mass are equal. This is closely linked to a virial theorem, as discussed in [37]. The two masses are defined as surface integrals
at infinity
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MKomar ¼
1

4p

I
1

DiNdSi ð47Þ

MADM ¼
�1
2p

I
1

DiWdSi ð48Þ
In this work, the local rotation rates are determined by demanding that the black holes are not rotating and so that their spin
Sa vanish. The individual spins can be defined by integrals on the spheres themselves
Sa ¼
1

8p

I
S
W6Aijmi

adSj ð49Þ
The total angular momentum is defined by a similar integral, taken at infinity, and reads
J ¼ 1
8p

I
1

Aijmi d Sj ð50Þ
where mi ¼ ð�Y ;X;0Þ. X and Y are the Cartesian coordinates with respect to the center of mass.
This problem has been solved in the context of KADATH by using the bispherical space implemented by the class

Space_bispheric (see Section 2.3). The input parameters are the radii of the spheres (taken equal in this particular case)
and their separation. A Cartesian tensorial basis of decomposition is used. The unknown are the fields N; W and
Ni ¼ ðNx;Ny;NzÞ and the global quantities X and Xa. Aij is defined as being a definition in terms of the unknowns (given
by Eq. (42)). The various vectors appearing in the equations, like the mi are passed to KADATH as constants. The equations
are given by Eqs. (39)–(41) and the boundary conditions enforced on both the spheres and at infinity. Matching of the fields
and their normal derivatives at the boundaries between the domains is imposed. The three integral equations constraining
the global quantities are also passed to the solver.

Contrary to the other cases presented in this paper, the binary black hole configurations are really three-dimensional. This
implies that the computational task is somewhat harder. Configurations with four different resolutions have been computed
with 9, 11, 13 and 15 points, respectively, in all dimensions and in all the domains. Let us mention that the size of the
Jacobian for the higher resolution is just less than 100,000. Configurations for five different separations are computed. It
appears that the values of the fields depend strongly from the value of X which must be obtained with a good accuracy. Such
accuracy can be measured by looking at the convergence of X as the function of the number of points as in Fig. 5. The con-
vergence is shown by taking the difference between the value of X found for given resolution and the one for the best avail-
able resolution (15 points in each dimension in this case).

The physical quantities are usually given in their adimensional form. This can be done by making use of the area mass of
the black holes: m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16p

p
. A is the area of the hole which is given by an integral on the horizon (i.e. the sphere):
A ¼
Z
S
W4dS ð51Þ
The area mass of the system is simply M ¼ m1 þm2 and is constant along a sequence of varying separation (see for instance
[39]). It follows that M is the total mass of the system when the black holes are infinitely separated. One can then define the
binding energy of the system as Eb ¼ MADM �M. The reduced mass is defined in the usual manner and in the case of equal
mass black holes is given by l ¼ M=4. The adimensional binding energy Eb=l and the adimensional total angular momentum
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J=Ml are shown in Fig. 6, as a function of the adimensional orbital velocity MX. The values obtained by KADATH are com-
pared to the data from [35]. The agreement is very good, especially considering that the variations of J (resp. Eb) are small
compared to the values of J (resp MADM) itself.

Finally, contours of constant values of some fields are shown in Fig. 7, in the orbital plane (the plane z ¼ 0) for a separation
of 12. The locations of the spheres are clearly visible.
7.4. Kerr problem

In this section, one aims at recovering the exact solution for a single stationary rotating black hole, along the lines of [40].
It is called the Kerr solution and is known to be analytic, at least for some choices of coordinates [41]. This is however not the
case for the formalism that is used here. The starting point is the same as the one used in the binary system case in Section
7.3. An orthonormal spherical tensorial basis of decomposition is used. Doing so and for this problem, all the fields will inde-
pendent of u, thus recovering the fact that the solution is axisymmetric.

In this section, and as opposed to what is done in Section 7.3, one aims at recovering an exact solution and so one needs to
remove the conformal flatness approximation. Indeed, even for a single black hole, it is known that their exists no choice of
coordinates for which the conformal metric is flat [42]. That being said, the unknowns are the same as in Section 7.3: two
scalars the lapse N and the conformal factor W and one vector, the shift Ni, to which one must add the conformal spatial met-
ric ~cij itself. The metric is a rank-2 symmetric tensor and so has six different components. By definition of the conformal fac-
tor, ~cij is such that its determinant is one. As will be seen in the following, the conformal metric still contains some gauge
degrees of freedom.
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The constraint equations along with the trace of the evolution ones can be written as
eDi
eDiN ¼ �2

eDiWeDiN
W

þ NW4AijA
ij ð52Þ

eR � 8
eDi
eDiW
W

¼ W4AijA
ij ð53Þ

eDjAij ¼ �6Aij

eDjW
W

ð54Þ
where Aij is the extrinsic curvature tensor which is given by
Aij ¼ 1
2N

eDiNj þ eDjNi � 2
3
eDkNk~cij

� �
ð55Þ
where eD denotes the covariant derivative associated to ~cij and eR is its scalar Ricci tensor. Eqs. (52)–(55) are the equivalent of
Eqs. (39)–(42), in the non-conformally flat case.

At infinity one demands that flat spacetime is recovered which gives N ¼ 1; W ¼ 1 and Ni ¼ 0, as in Section 7.3. The inner
boundary conditions are obtained in the same manner as in the binary case except that they must be written with a general
(non-flat) spatial three metric. One then gets, on the sphere S
NjS ¼ n0 ð56Þ

4~si
eDiW
W
þ eDi~sijS ¼ �W2Aij~si~sj ð57Þ

NijS ¼
n0

W2
~si þXmi: ð58Þ
Eqs. (56)–(58) are the equivalent of Eqs. (44)–(46), in the non-conformally flat case and for a single black hole. ~s is the unit
outgoing normal to the sphere, with respect to the conformal metric and X the rotation parameter of the hole.

The evolution equations, written in the stationary case, can be seen as equations for the spatial metric and they are
eDi
eDjN � 2

eDiNeDjW
W

� 2
eDjNeDiW

W
þ 2~cij

eDkNeDkW
W

� NeRij � 6N
eDiWeDjW

W2 þ 2N
eDi
eDjW
W

þ 2N~cij

eDk
eDkW
W

þ 2N~cij

eDkWeDkW

W2 þ 2NW4AikAk
j �W4 4AijN

k
eDkW
W
þ Nk eDkAij þ Aik

eDjN
k þ Ajk

eDiN
k

 !
¼ 0 ð59Þ
where eRij is the Ricci curvature of ~cij. It is the curvature that contains the second order operators in terms of the metric (i.e.
the expression of eRij involves terms that look like Dð~cijÞÞ.

Eq. (59) are obviously symmetric and so represent six components. However, if used as such, they do not lead to a well-
posed problem because they are not all independent. The construction of a well-behaved problem is rather tricky in this case
and is related to both the inner conditions for the spatial metric and the choice of gauge.

The problem of knowing what boundary conditions must be enforced on the metric on the horizon is a very contemporary
one and several proposals have been made in the literature. However only one has been successfully applied so far and it is
known as the no-boundary treatment [40]. The basic idea is to assume that Eq. (59) are somewhat degenerate on the horizon
(like some equations of Section 7.2) and so that they require less boundary conditions. If the degeneracy is not strictly dem-
onstrated, there are some good reasons to believe that it is true, at least at the first order (see Section IV-B of [40]). However
the code used in [40] does not use Eq. (59) as such but a variation of them that aims at imposing that the spatial metric ful-
fills a particular gauge known as the Dirac gauge. This gauge can be written as
Di~cij ¼ 0 ð60Þ
where D denotes the covariant derivative with respect to the flat metric. The gauge is used to simplify the explicit expression
of eRij.

When the full set of Eq. (59) is used, a full no-boundary treatment leads to a non-invertible system of equations because
the gauge has to be imposed at some point. The idea is to use Eq. (60), or at least some part of it, as a boundary condition for
the metric. From the numerical experiments conducted with KADATH, it is found that a way of recovering the Kerr spacetime
is to use only the component h of Eq. (60) as a boundary condition for the component ðh; rÞ of Eq. (59). The other components
of Eq. (59) are treated as degenerate without any boundary condition. It is somewhat surprising to observe that imposing
only one component of the Dirac gauge and only on the horizon is sufficient to obtain the full gauge in whole space, as will
be checked a posteriori. Finally one has to note that the conformal metric ~cij must be, by definition of W, such that its deter-
minant is unity: detð~cÞ ¼ 1. This is an additional equation on the components of the metric and it is used in place of the
ðu;uÞ component of Eq. (59).
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To summarize the situation, the equations that one uses when solving this problem in the context of KADATH are, as far as
the metric is concerned:

� the ðr; rÞ; ðr;uÞ; ðh; hÞ and ðh;uÞ components of Eq. (59), without any boundary conditions near the horizon (i.e. a s-method
of first order is used in the inner domain).

� the ðr; hÞ component of Eq. (59) is used in the standard way, with the component h of Eq. (60) as an inner boundary
condition.

� the condition on the determinant of the metric provides the last equation. As it contains no derivative, it is solved by a s-
method of zeroth order.

At spatial infinity, one demands that the metric goes to the flat one, which is possible only in the single black hole case
(for a binary system, gravitational waves would probably forbid this).

The reason why the setting described above leads to a system of equations that behaves correctly and why it is the only
combination that does so, at least in the context of this paper, is currently not known. Further studies and deeper mathemat-
ical understanding of the system is probably required but beyond the scope of this work.

Using a spherical space, those equations have been solved using four different resolutions (9, 11, 13 and 17 points in each
dimension). Sequences of black holes rotating at different values of X have been obtained. One single spherical shell is used
and the value of n0 is set to 0:5 in all the cases (see Eq. (56)). The results are presented as a function of the usual Kerr param-
eter J=M2 ¼ a=M where J is the total angular momentum and M the ADM mass of the system. Both quantities are computed
by surface integrals at infinity (see Section 7.3). The value of the Kerr parameter as a function of the adimensional quantity
MX is plotted in Fig. 8. A value of a=M � 0:91 is reached. This value is lower for lower resolutions as can be seen in Fig. 9.

Two error diagnostics are shown in Fig. 9. On the left panel the residual error on the full set of equations is plotted. By full
set, one means not only the equations used to solve the system but also the ones that were forgotten. In particular one can



Fig. 10. Values of the lapse function (left panel), the component Nr of the shift (center panel) and of the component ~crr of the spatial metric. The associated
value of a=M is about 0:91. The continuous (resp. dashed) lines show constant positive (resp. negative) value of the fields.
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think of the ðu;uÞ component of Eq. (59) or the Dirac Gauge in whole space. This is a very strong test and it shows, as already
stated, that the Dirac gauge is enforced in the whole space by only its h component on the horizon. The right panel of Fig. 9
shows the relative difference between the ADM and Komar masses (as defined by Eqs. (47) and (48)). Like in the binary case,
those two quantities should be equal. However, it is never directly enforced in the single black hole case and so gives a check
of the precision of the code. As stated in Section 7.3, this is related to a virial theorem [37]. Both plots in Fig. 9 are shown as a
function of a=M and for the four different resolutions. The errors decay as the resolution increases and are higher for higher
values of the Kerr parameter. This is probably related to the fact that the fields have stronger gradients when a=M increases
and so need more points to be accurately described. This effect is also observed in [40]. Some examples of the fields, for
a=M � 0:91 are shown in Fig. 10.
8. Perspectives

This presentation of the KADATH library was intended to convince the physicists that it can be a valuable tool in the study
of a wide class of problems where partial differential equations are involved. Several domain decompositions have been pre-
sented (Section 2) and the associated spectral basis exhibited (Section 3). The discretization of field equations by means of
the s and Galerkin methods have been discussed in Section 4 and the solution of the resulting non-linear system explained in
Section 5. The construction of a code that uses the KADATH library is briefly sketched in Section 6.

The resolution of four different problems has also been presented. Solution called vortons have been computed in Section
7.1, using a standard KADATH setting with spherical domains. In Section 7.2 the computation of a critic solution in the context
of core collapse has been presented. This case illustrates the use of specialized domains and different variables in different
regions of space. Section 7.3 explained the study of spacetimes containing two black holes. It makes use of the bispherical
coordinates implemented in KADATH. The ability of the library to deal with intricate sets of equations is clearly illustrated in
Section 7.4, where the Kerr black hole is recovered, in the 3 + 1 formalism of general relativity.

Even if KADATH is currently in a production state, where it can be used to study new and interesting physics, there are still
some developments that come to mind. One can for instance think about implementing new geometries like true cylindrical
coordinates (as opposed to the specialized ones used in Section 7.2) or deformed spheres. Such spheres have been exten-
sively used in the LORENE library to match the physical surfaces of deformed objects, like rotating neutron stars. This case
is in fact a situation where the surface of the domains in not known beforehand but must be determined by the code. To do
so, there will be need to have some additional unknowns that would describe the shape of the various domains. Those un-
knowns would be associated to additional equations constraining the shapes. In the case of neutron stars, one would for in-
stance demand that the surface of the object is the surface on which the specific enthalpy vanishes. Given those techniques
have already been successfully applied in many codes, they should work properly with KADATH. Geometries with more than
three spatial dimensions could also be studied, in order to simulate things like brane worlds. Needless to say that in this last
case, the resulting size of the system would be quite big and possibly difficult to handle.

It would be also interesting to test the behavior of KADATH on much bigger clusters than the one used so far. Several such
clusters (with much more than 1000 nodes) are available to the scientific community and there is hope to install KADATH on
such machines. Another way to deal with very big matrices would be to use iterative techniques to invert the Jacobian. As
stated in Section 5.3, this solution is currently not retained in KADATH because of several difficulties (lack of generality and
absence of simple preconditionning techniques). Nevertheless, a much more detailed study of those algorithms should be
undertaken. A successful use of the iterative techniques would potentially result in a dramatic decrease of the resources
needed to handle the Jacobian, thus making the library easier to use, especially in the three-dimensional case.
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A major extension of KADATH would be the possibility to perform time evolutions. Even when spectral methods are used
to discretize space, time is usually dealt with by means of finite difference schemes. One of the reason for this lies in the fact
that the interval of interesting time is usually not known in advance. Also the discretization with respect to time is usually
believed to lead to smaller errors that the spatial ones, thus making the use of temporal spectral methods less appealing. If
those mixed schemes (finite difference in time and spectral in space), could be almost directly used with KADATH, it is not
clear what this will improve with respect to already existing codes. Indeed, for free evolutions (like in [43]) for which the
only equations solved are hyperbolic ones, the whole KADATH machinery would not be used but to compute the sources.
On the other hand, for constrained evolutions (like in [44]), one would need to solve elliptic equations at each time-step,
which would probably be impracticable for three-dimensional problems with KADATH. The library however, could be very
useful in investigating schemes that are fully spectral, in time as in space. Results of this type are very few and are only avail-
able for very simple systems (see [45] for an example with only one spatial dimension). For such fully spectral codes, time is
just another coordinate that is treated in the same manner as the spatial dimensions. If this could in theory be solved by
KADATH, there is a long road to compute complicated system evolutions in this framework (like the binary black holes for
instance). Preliminary tests, using systems with symmetries (like rotating single objects or pure gravitational waves), would
be in order to check whether such computations are doable or not.

Obviously all the work done would be quite pointless without applications to real physics problems and it is the main axis
of future work. There are plans to apply the library to the computation of solutions in gauge field theories, like monopoles
with or without gravity, vortons in more complicated theories than the one exposed in Section 7.1. In this area of physics, the
field of application is huge. KADATH has been designed especially with this kind of things in mind and it is believed that it will
be very efficient in findings those solutions.

Another area of application is the one of general relativity, especially in the context of compact objects, black holes or
neutrons stars. One of the main application would be the computation of binary black holes configurations without the con-
formal flatness approximation. In a sense it would be a merging of Sections 7.3 and 7.4. But there are some conceptual dif-
ficulties coming from the presence of outgoing gravitational waves in this case. The applications of KADATH to cases
containing neutron stars would also be interesting. If the gravitational field is usually weaker than for black holes and so
easier to handle, the inclusion of matter can cause many additional difficulties.

In the hopefully long life of KADATH, there is hope that it will also be applied to problems that are not yet known to the
author. This would fully test the modularity of KADATH. Should this be successful, then KADATH would have reached its main
objective.
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